An Active Contour Model for the Segmentation of Images with Intensity Inhomogeneities and Bias Field Estimation
نویسندگان
چکیده
Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed for segmenting images with intensity inhomogeneity and estimating the bias field simultaneously. In the modified model, a clustering criterion energy function is defined by considering the difference between the measured image and estimated image in local region. By using this difference in local region, the modified method can obtain accurate segmentation results and an accurate estimation of the bias field. The energy function is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. The proposed model first appeared as a two-phase model and then extended to a multi-phase one. The experimental results demonstrate the advantages of our model in terms of accuracy and insensitivity to the location of the initial contours. In particular, our method has been applied to various synthetic and real images with desirable results.
منابع مشابه
IEOPF: An Active Contour Model for Image Segmentation with Inhomogeneities Estimated by Orthogonal Primary Functions
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the ...
متن کاملStudy and Analysis of Two Segmentation Methods for Ultrasound Images
Ultrasound images contain strong speckle noise and attenuation artifacts such as intensity inhomogeneity which makes the segmentation process challenging. In this paper, two segmentation algorithms have been studied and analyzed. First method is multiplicative intrinsic component optimization (MICO) algorithm which is based on the minimization of bias fields. It decomposes the ultrasound images...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملActive Contour Model Coupling with Higher Order Diffusion for Medical Image Segmentation
Active contour models are very popular in image segmentation. Different features such as mean gray and variance are selected for different purpose. But for image with intensity inhomogeneities, there are no features for segmentation using the active contour model. The images with intensity inhomogeneities often occurred in real world especially in medical images. To deal with the difficulties r...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کامل